[Home]

Mathematical Texts of Nils Ackermann

Published Articles

[21]
N. Ackermann and T. Weth, Unstable normalized standing waves for the space periodic NLS, Analysis & PDE 12 (2019), no. 5. [ DOI | arXiv | .pdf ]
[20]
N. Ackermann, A. Cano, and E. Hernández-Martínez, Spectral density estimates with partial symmetries and an application to Bahri-Lions-type results, Calc. Var. Partial Differential Equations 56 (2017), no. 1, Art. 6, 19. [ DOI | .pdf ]

The original publication is available at springerlink.com (© Springer-Verlag Berlin Heidelberg)

[19]
N. Ackermann, Uniform continuity and Brézis-Lieb type splitting for superposition operators in Sobolev space, Adv. Nonlinear Anal. (2016). [ DOI | arXiv | .pdf ]
[18]
N. Ackermann and J. Chagoya, Ground states for irregular and indefinite superlinear Schrödinger equations, J. Differential Equations 261 (2016), no. 9, 5180–5201. [ DOI | .pdf ]
[17]
N. Ackermann and N. Dancer, Precise exponential decay for solutions of semilinear elliptic equations and its effect on the structure of the solution set for a real analytic nonlinearity, Differential Integral Equations 29 (2016), no. 7-8, 757–774. [ arXiv | http | .pdf ]
[16]
N. Ackermann, M. Clapp, and A. Pistoia, Boundary clustered layers near the higher critical exponents, J. Differential Equations 254 (2013), no. 10, 4168–4193. [ DOI | arXiv | .pdf ]
[15]
N. Ackermann and A. Szulkin, A concentration phenomenon for semilinear elliptic equations, Arch. Ration. Mech. Anal. 207 (2013), no. 3, 1075–1089. [ DOI | arXiv | .pdf ]

The original publication is available at springerlink.com (© Springer-Verlag Berlin Heidelberg)

[14]
N. Ackermann, M. Clapp, and F. Pacella, Alternating sign multibump solutions of nonlinear elliptic equations in expanding tubular domains, Comm. Partial Differential Equations 38 (2013), no. 5, 751–779. [ DOI | arXiv | .pdf ]
[13]
N. Ackermann, M. Clapp, and F. Pacella, Self-focusing multibump standing waves in expanding waveguides, Milan J. Math. 79 (2011), no. 1, 221–232. [ DOI | .pdf ]

The original publication is available at springerlink.com (© Springer-Verlag Berlin Heidelberg)

[12]
N. Ackermann, Long-time dynamics in semilinear parabolic problems with autocatalysis, Recent progress on reaction-diffusion systems and viscosity solutions (Y. Du, H. Ishii, and W.Y. Lin, eds.), World Sci. Publ., Hackensack, NJ, 2009, pp. 1–30. [ .html ]
[11]
N. Ackermann, Solution set splitting at low energy levels in Schrödinger equations with periodic and symmetric potential, J. Differential Equations 246 (2009), no. 4, 1470–1499. [ DOI | .pdf ]
[10]
N. Ackermann, T. Bartsch, P. Kaplický, and P. Quittner, A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3493–3539. [ DOI | .pdf ]
[9]
N. Ackermann, T. Bartsch, and P. Kaplický, An invariant set generated by the domain topology for parabolic semiflows with small diffusion, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 613–626. [ DOI | .pdf ]
[8]
N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal. 234 (2006), no. 2, 277–320. [ DOI | .pdf ]
[7]
N. Ackermann, An abstract approach to multibump solutions of periodic Schrödinger equations and applications, Nonlin. Anal. 63 (2005), e1031–e1037. [ DOI ]
[6]
N. Ackermann and T. Bartsch, Superstable manifolds of semilinear parabolic problems, J. Dynam. Differential Equations 17 (2005), no. 1, 115–173. [ DOI | .pdf ]

The original publication is available at springerlink.com (© Springer-Verlag Berlin Heidelberg)

[5]
N. Ackermann and T. Weth, Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting, Commun. Contemp. Math. 7 (2005), no. 3, 269–298. [ DOI ]
[4]
N. Ackermann, A Cauchy-Schwarz type inequality for bilinear integrals on positive measures, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2647–2656 (electronic). [ DOI | .pdf ]
[3]
N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z. 248 (2004), no. 2, 423–443. [ DOI | .pdf ]

The original publication is available at springerlink.com (© Springer-Verlag Berlin Heidelberg)

[2]
N. Ackermann, On the multiplicity of sign changing solutions to nonlinear periodic Schrödinger equations, Topological methods, variational methods and their applications (Taiyuan, 2002) (H. Brezis, K.C. Chang, S.J. Li, and P. Rabinowitz, eds.), World Sci. Publishing, River Edge, NJ, 2003, pp. 1–9. [ .html ]
[1]
N. Ackermann, Multiple single-peaked solutions of a class of semilinear Neumann problems via the category of the domain boundary, Calc. Var. Partial Differential Equations 7 (1998), no. 3, 263–292. [ DOI ]

Theses

[2]
N. Ackermann, Lokalisierung der niederenergetischen Lösungen eines singulär gestörten elliptischen Neumann-Problems mittels der Geometrie des Gebietsrandes, Ph.D. thesis, Universität Giessen, Germany, 1999. [ http ]
[1]
N. Ackermann, Die Anzahl positiver Lösungen bei semilinearen elliptischen Neumann-Problemen, Master's thesis, Universität Karlsruhe, Germany, 1995.

This file was generated using bibtex2html.

[Home]