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We consider the existence of a ground state for the subcritical stationary
semilinear Schrödinger equation −∆u + u = a(x)|u|p−2u in H1, where a ∈
L∞(RN) may change sign. Our focus is on the case where loss of compactness
occurs at the ground state energy. By providing a new variant of the Splitting
Lemma we do not need to assume the existence of a limit problem at infinity, be
it in the form of a pointwise limit for a as |x| → ∞ or of asymptotic periodicity.
That is, our problem may be irregular at infinity. In addition, we allow a to
change sign near infinity, a case that has never been treated before.
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1 Introduction
We are concerned with the subcritical stationary semilinear Schrödinger equation

−∆u+ u = a(x)|u|p−2u, u ∈ H1(RN), (1.1)

where H1 := H1(RN) is the usual Sobolev space and a ∈ L∞(RN). Here and in what
follows function spaces are over RN unless otherwise noted. Suppose throughout that
2 < p < 2∗, where 2∗ := 2N/(N − 2) if N ≥ 3, 2∗ := ∞ if N = 1 or 2, is the critical
Sobolev exponent.
Solutions to the more general problem

−∆u+ V (x)u = a(x)|u|p−2u, u ∈ H1(RN), (1.2)
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give rise to certain solitary waves of the corresponding time dependent Schrödinger or
Klein-Gordon equations, and have therefore received much attention in the literature.
Under appropriate conditions on V and a, weak solutions of (1.2) are in correspondence
with the critical points of the variational functional (the “energy”) J : H1 → R defined by

J(u) := 1
2

∫
(|∇u|2 + V |u|2)− 1

p

∫
a|u|p.

A ground state of (1.2) is a minimum of J on the Nehari manifold

{u ∈ H1\{0} | DJ(u)u = 0},

which is a nontrivial critical point of J under suitable conditions on V and a. The problem
of existence of ground states for (1.2) is of particular interest since they potentially yield
orbitally stable standing wave solutions to the Schrödinger Equation [32, 49]. The main
obstacle to prove existence of solutions for (1.2) is the inherent lack of compactness, that
is, the failure of the Palais-Smale or Cerami conditions for J due to the noncompact
embedding H1 ↪→ Lp for p ∈ (2, 2∗).
If V and a are constant then existence of ground states of (1.1) was analyzed in the semi-

nal work of Berestycki and Lions [7], see also the references therein. For the nonautonomous
equation, existence of ground states has been considered under various hypotheses to over-
come the lack of compactness.
If V and a are radially symmetric then compactness is restored in the radially symmetric

subspace H1
r of H1 [5, 25]. Depending on other properties of V and a a ground state in

H1
r may or may not be a ground state in H1. If, roughly speaking, lim|x|→∞ V (x) = ∞,

lim sup|x|→∞ a(x) ≤ 0 or a+ ∈ Lq for a suitable q > 0 then compactness is restored in H1

or in an appropriately weighted space [2,20,21,23,27–29,31,33,39,44,47,48,52]. And, last
but not least, replacing the right hand side of (1.2) by f(x, u), where f is asymptotically
linear in u, a nonresonance condition ensures compactness [40,58].
Apart from these cases, most results impose the existence of a limit problem at infinity

and employ concentration compactness arguments. This can be achieved by assuming the
existence of pointwise limits of V and a as |x| → ∞, see, e.g., [3, 4, 10–12,14,15,17,22,25,
29, 30, 35, 37, 41, 54–56] or, more generally, [16, 18, 34]. Another variant of this approach is
to assume (asymptotic) periodicity of V and a in the coordinates of the x variable, see,
e.g., [24, 26,33,35,36,43,50,51,53,57].
The only existence result for (1.2) in the setting without compactness we are aware of

that does not impose a limit on V and a as |x| → ∞ is [13]. Here the existence of a
ground state is shown for a ≡ 1 and ess inf V > 0, assuming that V takes values below
lim inf |x|→∞ V on a large enough ball (Theorem 1.2 cit. loc.). The condition is not explicit
though and cannot be checked directly. Nevertheless, under explicit conditions on V the
authors prove in Theorem 1.3 cit. loc. the existence of a solution, which is not a ground
state.
Another important aspect is the sign of the functions V and a. We say that (1.2) is

linearly indefinite if V changes sign, and superlinearly indefinite if a changes sign. There
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are many existence results for the superlinearly indefinite problem, linearly indefinite or not,
see [18,20–23,27–29,31,34,39,47,52]. In all of these results a is not allowed to change sign
near infinity, in some sense. One often used assumption is that either lim sup|x|→∞ a(x) ≤ 0
or lim inf |x|→∞ a(x) ≥ 0. More generally, a number of authors assume that either a+ or a−
belongs to some Lq-space for suitable q, or variants of this type of hypothesis.
Our aim in this article is twofold: first we want to remove the assumption of pointwise

limits at infinity or of asymptotic periodicity for the functions V and a in the scenario
without compactness. This is what we allude to with the term irregular in the title. And
second, we are interested in lifting the requirement that a does not change sign at infinity
in the indefinite superlinear problem. To highlight the second goal we restrict ourselves
and assume V ≡ 1 for the rest of the text.
Before presenting our results we need to introduce some more notation. If a ∈ L∞ then

we define the variational functional

Ja(u) := 1
2

∫
(|∇u|2 + |u|2)− 1

p

∫
a|u|p

corresponding to (1.1). For y ∈ RN we define the translation operator τy on spaces of
functions on RN by

(τyf)(x) := f(x− y).

Denote for q ∈ [1,∞] by |·|q the norm in Lq. In a normed space X denote by Br(x) :=
Br(x;X) and Br(x) := Br(x;X) the open and closed balls with radius r > 0 and center
x ∈ X. If x = 0 we set BrX := Br(0;X) and BrX := Br(0;X). Fixing a ∈ L∞ define the
set

P := B|a|∞L
∞.

We endow P with the weak*-Topology, identifying L∞ with the dual space of L1, and
obtain a compact metrizable space (cf. [46, Theorems 3.15 and 3.16]). Consider the subset
A of translates of a,

A :=
{
τya

∣∣∣ y ∈ RN} ⊆ P . (1.3)

In dealing with A we will always use the topology induced by P . Define

B := A\A ⊆ P (1.4)

(in general this is not the topological boundary of A in P). We now set

ā := sup
u∈B

(ess supu). (1.5)

By convention, ā := −∞ if B = ∅. It follows from Lemma 2.1 below that ā ≤ ess sup a, and
the inequality may be strict (if a is constant, ā = −∞). Denoting by a± := max{0,±a}
the positive and negative parts of a we introduce the following condition on the function
a:
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(A) a+ 6= 0 as an element of L∞ and either (i) ā ≤ 0 or (ii) ā ≤ a or (iii) there ex-
ist γ ∈ (0, 2), sequences (zn) ⊆ RN and (Rn) ⊆ R, and a non-negative function
κ ∈ L1

loc\{0} such that Rn → ∞, τ−zna
w*→ ā, and a(x) ≥ ā + κ(x − zn)e−γRn for all

n and x ∈ BRn(zn).

Our main result is the following

Theorem 1.1. If p ∈ (2, 2∗), a ∈ L∞, and (A) is satisfied then Ja has a positive ground
state.

We allow the situation where τxna has no pointwise convergent subsequence for any
sequence (xn) ⊆ RN such that |xn| → ∞. Instead, we use the weak*-compactness to pass
to a limit problem for each such sequence, by using concentration compactness in the form
of a new variant of the Splitting Lemma, which was introduced originally by Benci and
Cerami [6]: suppose that (un) is a Palais-Smale sequence for Ja at the ground state energy.
In an iterative procedure, passing to subsequences implicitly, one splits off parts of this
sequence that remain concentrated. Usually one proves in each step that the resulting
sequence (vn) is still Palais-Smale. If we only work with weak*-compactness of sequences
τxna this is no longer true in general. We show instead that a weaker condition is satisfied,
that is, that ∇Ja(vn) vanishes in H1, see Definitions 3.1 and 3.2 below. This yields a
Splitting Lemma with a slightly weaker statement than usual, which is still sufficient to
show the existence of a ground state. The only reference we know where weak*-compactness
was used in a similar way is [40]. There the authors show that compactness is restored in
a nonresonant asymptotically linear problem, so concentration compactness is not used.
In what follows we will present some tools to easily generate nontrivial examples of

functions a that satisfy (A). In order to do that, denote for a ∈ L∞

â := lim
R→∞

(
ess sup a|RN\BR

)
.

In general, â 6= ā, as can be seen when a is constant.

Proposition 1.2. If (A) is satisfied with ā replaced by â then (the original condition) (A)
is satisfied.

One immediate consequence is that the well known cases â ≤ 0 and â ≤ a are covered by
Theorem 1.1. To illustrate, suppose that a ∈ Cb(RN) (the bounded continuous functions
on RN) satisfies a+ 6= 0. If â = lim sup|x|→∞ a(x) ≤ 0 then the existence of a ground state
was shown in [33]. If â = lim sup|x|→∞ a(x) ≤ a then â = lim|x|→∞ a(x) exists and â ≤ a.
Either a ≡ â > 0 and the radial ground state in H1

r is also a ground state in H1, since every
ground state in H1 is radially symmetric, or a  â and a ground state exists by standard
concentration compactness arguments, see [37,38]. Proposition 1.5 below shows that even
for this simple setup our main result gives an improvement since it allows to extend the
problem to higher dimensions by constancy.
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To illustrate Proposition 1.2 further we provide some nontrivial new examples. The role
of the function κ in condition (A) is highlighted by a general hypothesis about the behavior
of a in a cone:

Example 1.3. Suppose that a ∈ L∞ satisfies â > 0 and has the following properties: there
exist x0 ∈ RN , |x0| = 1, r0 ∈ (0, 1), γ ∈ (0, 2r0), and R > 0 such that, setting

U := {tx | x ∈ Br0(x0), t > 0},

it holds true that
lim
|x|→∞
x∈U

a(x) = â (1.6)

and
∀x ∈ U\BR : a(x) ≥ â+ e−γ|x|. (1.7)

Then a satisfies (A).

Note that outside of the cone U the behavior of a is only restricted by the assumption
ess sup(a|RN\U) ≤ â.

Proof of Example 1.3. Clearly a+ 6= 0. Put

zn :=
(

R

1− r0
+ n− 1

)
x0 and Rn := r0|zn|.

It is easy to see that then

BRn(zn) ⊆ U\BR+(1−r0)(n−1) ⊆ U\BR. (1.8)

Hence we obtain from (1.7) for all x ∈ BRn(zn)

a(x) ≥ â+ e−γ|x| ≥ â+ e−γ|x−zn|e−γ|zn| = â+ κ(x− zn)e−
γ
r0
Rn ,

where we have set κ(x) := e−γ|x| and where γ
r0
∈ (0, 2). Moreover, (1.6) and (1.8) imply

that (τ−zna)(x) → â for all x ∈ RN . By Lebesgue’s Dominated Convergence Theorem,
τ−zna

w*→ â.

In the next example there is no direction in which a converges pointwise as |x| → ∞:

Example 1.4. Define Z0 := B1 and Zi := B2i\B2i−1 , for i ∈ N. For any γ ∈ (0, 2) define
a ∈ L∞ by

a(x) :=

−1 x ∈ Zi, i odd,
1 + e−γ2i−2

x ∈ Zi, i even.

Then a satisfies (A).
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Proof. For n ∈ N take zn := (3 · 22n−2, 0, . . . , 0) and Rn := 22n−2. Then BRn(zn) ⊆ Z2n and
hence

∀x ∈ BRn(zn) : a(x) = 1 + e−γ22n−2 = 1 + e−γRn .

In the last example the radial symmetry would allow to work in the space H1
r of radially

symmetric functions, where we have compactness. Nevertheless, the radial ground state is
not necessarily a ground state, so our Theorem 1.1 gives a better result. Of course, one
could combine Examples 1.3 and 1.4 into an example where a is not radially symmetric
and where there is no direction in which a converges pointwise as |x| → ∞. Moreover,
one could replace the concentric circles separating different regions of definition of a in
Example 1.4 by other geometric objects, for example by logarithmic spirals.
We now prove another tool to generate examples by extension to higher dimensions:

Proposition 1.5. Suppose that k, ` ∈ N and that (A) is satisfied for a ∈ L∞(Rk). Define
a′ : Rk × R` → R by a′(x, y) := a(x). Then (A) is satisfied for a′ ∈ L∞(Rk × R`).

To mention a special case, suppose that a ∈ L∞(R) has limits a±∞ := limx→±∞ a(x),
that a+∞ > max{a−∞, 0}, and that there are γ ∈ (0, 2) and R > 0 such that

∀x > R : a(x) ≥ a+∞ + e−γx.

Choosing r0 ∈ (γ/2, 1) we obtain from Example 1.3 that a satisfies (A). Hence by Propo-
sition 1.5 also the function a′ ∈ L∞(R2) defined by a′(x1, x2) := a(x1) satisfies (A), and
the problem

−∆u+ u = a′(x)|u|p−2u, u ∈ H1(R2) (1.9)

has a ground state. In contrast, if a−∞ > 0 then by [26, Theorem 3] problem (1.9) does
not possess a ground state for the function

a′(x1, x2) :=

a−∞, x1 < 0,
a+∞, x1 > 0.

With respect to the existence of a ground state our problem is analogous to the case
where a ≡ 1 and V depends on x. For problem (1.1) one expects to find a ground state
roughly when a is strictly larger than lim sup|x|→∞ a(x) on a large enough set. In the
other case one expects to find a ground state roughly when V is strictly smaller than
lim inf |x|→∞ V (x) on a large enough set. In a forthcoming paper we are dealing with the
latter case in a similar manner as here, and we also treat the case where both of V and a
are not constant.
The article is structured as follows: In Section 2 we explain how the Nehari manifold

can be used in indefinite superlinear problems. In Section 3 we prove our new variant of
the Splitting Lemma. Section 4 is devoted to the proof of Theorem 1.1, and in Section 5
we prove Propositions 1.2 and 1.5.
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2 The Nehari Manifold
We assume in this section that a ∈ L∞ and a+ 6= 0. The following facts about the Nehari
manifold are known but maybe not as commonly as in the case of a > 0. They could also
be taken from the references [9, 42].
Denote by |E| the Lebesgue measure of a measurable subset E of RN . In any normed

space X denote by S1X := {x ∈ X | ‖x‖ = 1} the sphere of radius 1 with center 0. The
following will be useful in various places:

Lemma 2.1. For any u ∈ L∞ it holds true that

ess supu = sup
{∫

RN
uϕ

∣∣∣∣ ϕ ∈ S1L
1, ϕ ≥ 0

}
. (2.1)

Proof. Denote by c the right hand side of (2.1). If ϕ ∈ S1L
1 and ϕ ≥ 0 then∫

RN
uϕ ≤ ess supu

∫
RN
ϕ = ess supu.

Therefore, c ≤ ess supu. To show the inverse inequality, first fix some R > 0 and x ∈ RN .
For any Lebesgue-measurable subset E ⊆ BR(x) we find

1
|E|

∫
E
u =

∫
RN
u
χE
|E|
≤ c,

where χE denotes the characteristic function of E. From [45, Theorem 1.40] it follows that
u(x) ≤ c a.e. in BR(x). Covering RN with countably many balls BR(x) we obtain u(x) ≤ c
a.e. in RN , i.e., ess supu ≤ c.

From a+ 6= 0 we obtain ess sup a > 0, and Lemma 2.1 yields ϕ ∈ S1L
1 such that ϕ ≥ 0

and
∫
aϕ > 0. Approximating ϕ suitably in L1 we obtain that

∃ψ ∈ C∞c : ψ ≥ 0 and
∫
aψ > 0. (2.2)

We define the Nehari set of Ja by

Na := {u ∈ H1\{0} | DJa(u)u = 0}

and set ca := infNa Ja. By convention, ca :=∞ if Na = ∅. Denote by

Cp := sup
u∈H1\{0}

|u|p
‖u‖

the operator norm of the continuous embedding H1 ↪→ Lp. Here

‖u‖2 =
∫
RN

(|∇u|2 + u2)
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defines the standard norm on H1. Set

U+
a :=

{
u ∈ H1

∣∣∣∣ ∫
RN
a|u|p > 0

}
and

S+
a := U+

a ∩ S1H
1.

By (2.2) U+
a is nonempty. Moreover, U+

a is open in H1 and S+
a is open in S1H

1. For any
u ∈ H1\{0} we define the fibering map ha,u : [0,∞) → R by ha,u(t) := Ja(tu). It is then
clear that ha,u has a positive critical point if and only if u ∈ U+

a . If this is the case then it
is easy to see that the positive critical point ta,u of ha,u is unique, a nondegenerate global
maximum of ha,u. Moreover, tu ∈ Na if and only if t = ta,u. Directly calculating ta,u in
terms of a and u yields that the mapping U+

a → (0,∞), u 7→ ta,u is continuous. Hence the
map S+

a → Na, u 7→ ta,uu is a homeomorphism, with inverse u 7→ u/‖u‖.
If u ∈ Na then

‖u‖2 =
∫
RN
a|u|p ≤

∫
RN
a+|u|p ≤ Cp|a+|∞‖u‖p.

Hence there is C > 0, independent of a, such that

inf
u∈Na
‖u‖ ≥ C|a+|−1/(p−2)

∞ (2.3)

and
inf
u∈Na

Ja(u) ≥
(

1
2 −

1
p

)
C2|a+|−2/(p−2)

∞ . (2.4)

Consequently, Na is a closed subset of H1. It is standard to show that Na is a submanifold
of H1 of class C2 and that, denoting by Ja the restriction of Ja to Na, the critical points
of Ja coincide with the nontrivial (i.e. nonzero) critical points of Ja. It follows as in the
definite superlinear case that a ground state cannot change sign and may be taken to be a
positive function.
Recall that a sequence (un) ⊆ H1 is called a Palais-Smale sequence for Ja (a (PS)-

sequence in short) if (Ja(un))n is bounded and DJa(un) → 0. Moreover, if (un) is a
(PS)-sequence for Ja and Ja(un)→ c then (un) is called a (PS)c-sequence for Ja. Since the
nonlinearity in (1.1) is homogeneous in u it is standard to show that (PS)-sequences for Ja
are bounded in H1.

Lemma 2.2. Any (PS)c-sequence for Ja is a (PS)c-sequence for Ja.

Proof. Suppose that (un) ⊆ Na is a (PS)c-sequence for Ja, for some c ∈ R. Define the
functional Ka : H1 → R by Ka(u) := DJa(u)u. Then Na = K−1

a (0)\{0}. Since Ja(un) =(
1
2 −

1
p

)
‖un‖2, ‖un‖ is bounded and hence there is C > 0 such that

‖∇Ka(un)‖
‖un‖

≤ C for all n. (2.5)
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Moreover, for all n
〈∇Ka(un), un〉 = (2− p)‖un‖2 < 0 (2.6)

and
∇Ja(un) = ∇Ja(un)− 〈∇Ja(un),∇Ka(un)〉∇Ka(un)

‖∇Ka(un)‖2 . (2.7)

Since un ∈ Na, 〈∇Ja(un), un〉 = 0, i.e. ∇Ja(un)⊥un. This implies

‖∇Ka(un)‖2 ≥
(
〈∇Ka(un), un〉

‖un‖

)2

+
(
〈∇Ka(un),∇Ja(un)〉

‖∇Ja(un)‖

)2

(2.8)

for all n. It follows that

‖∇Ja(un)‖ · ‖∇Ja(un)‖
≥ 〈∇Ja(un),∇Ja(un)〉

= ‖∇Ja(un)‖2

‖∇Ka(un)‖2

‖∇Ka(un)‖2 −
(
〈∇Ja(un),∇Ka(un)〉

‖∇Ja(un)‖

)2
 by (2.7)

≥ ‖∇Ja(un)‖2

‖∇Ka(un)‖2

(
〈∇Ka(un), un〉

‖un‖

)2

by (2.8)

= ‖∇Ja(un)‖2

‖∇Ka(un)‖2 (2− p)2‖un‖2 by (2.6)

≥ C‖∇Ja(un)‖2 by (2.5).

Hence ‖∇Ja(un)‖ → 0 and (un) is a (PS)c-sequence for Ja.

3 The Splitting Lemma
In this section we just assume that a ∈ L∞. Since in general Ja does not satisfy the (PS)-
condition at all levels due to the unboundedness of the domain, the main tool to obtain
information about minimizing sequences for Ja if a+ 6= 0 is a so-called Splitting Lemma.
It serves to analyze the possible loss of compactness at infinity and allows, in combination
with energy estimates, to regain compactness for these sequences.
A map F : X → Y between Banach spaces X, Y is said to BL-split along weakly conver-

gent sequences (or simply to BL-split) if for any sequence (un) ⊆ X such that un ⇀ u in
X it holds true that F(un) − F(un − u) → F(u) in Y . A similar notion was introduced
(without giving it a name) by Brézis and Lieb [8]. Writing f(t) := |t|p−2t and F (t) := 1

p
|t|p,

it is well known that the maps u 7→ ‖u‖2, u 7→ F (u) and u 7→ f(u) BL-split as maps from
H1 into R, L1 and Lp/(p−1), respectively (cf. [1, Lemma 6.3]). It follows that if (un) ⊆ H1
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and (yn) ⊆ RN are such that τ−ynun ⇀ u0 in H1 then∫
RN
|(τ−yna)(F (τ−ynun)− F (τ−ynun − u0)− F (u0))|

≤ |a|∞
∫
RN
|F (τ−ynun)− F (τ−ynun − u0)− F (u0)| = o(1)

and∫
RN
|(τ−yna)(f(τ−ynun)− f(τ−ynun − u0)− f(u0))|p/(p−1)

≤ |a|p/(p−1)
∞

∫
RN
|f(τ−ynun)− f(τ−ynun − u0)− f(u0)|p/(p−1) = o(1).

Since ‖·‖2 BL-splits on H1 it follows that

Jτ−yna(τ−ynun)− Jτ−yna(τ−ynun − u0)− Jτ−yna(u0) = o(1) (3.1)

and
DJτ−yna(τ−ynun)−DJτ−yna(τ−ynun − u0)−DJτ−yna(u0) = o(1). (3.2)

Definition 3.1. A sequence (un) ⊆ H1 is said to vanish if τxnun ⇀ 0 in H1 for every
sequence (xn) ⊆ RN .

If (un) vanishes in the above sense then (un) is bounded in H1 and τxnun → 0 in L2
loc for

every sequence (xn) ⊆ RN . Hence

lim
n→∞

sup
x∈RN

∫
BR(x)

|un|2 = 0

is satisfied for every R > 0, and Lions’ Vanishing Lemma [38, Lemma I.1.] implies that
un → 0 in Lq for every q ∈ (2, 2∗).

Definition 3.2. If (un) ⊆ H1 then we say that (DJa(un)) vanishes in H−1 if

DJτxna(τxnun) w*→ 0

for every sequence (xn) ⊆ RN .

In other words, (DJa(un)) vanishes in H−1 if and only if (∇Ja(un)) vanishes in H1.

Lemma 3.3. Suppose that (un) ⊆ H1, (yn) ⊆ RN , and a∗ ∈ L∞ are such that (DJa(un))
vanishes in H−1, τ−ynun ⇀ u0 in H1, and τ−yna

w*→ a∗. Define vn := un − τynu0. Then

Ja(un)− Ja(vn)→ Ja∗(u0), (3.3)
‖un‖2 − ‖vn‖2 → ‖u0‖2, (3.4)

DJa∗(u0) = 0, (3.5)

and (DJa(vn)) vanishes in H−1.
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Proof. Since τ−yna
w*→ a∗, it holds true that

Ja∗(u0) = Jτ−yna(u0) + o(1).

Combining this with (3.1) we obtain (3.3). Since ‖·‖2 BL-splits, (3.4) follows.
To show (3.5) let v ∈ H1. Since τ−ynun → u0 in Lploc, f(τ−ynun)v → f(u0)v in L1. Hence

DJa∗(u0)v = 〈u0, v〉 −
∫
RN
τ−ynaf(u0)v + o(1)

= 〈τ−ynun, v〉 −
∫
RN
τ−ynaf(τ−ynun)v + o(1)

= DJτ−yna(τ−ynun)v + o(1)
= o(1),

where we have used that (DJa(un)) vanishes in H−1. Since v was arbitrarily chosen in H1,
(3.5) holds true.
To prove that (DJa(vn)) vanishes in H−1, suppose that (xn) ⊆ RN and v ∈ H1. If

DJτxna(τxnvn)v → 0 were not true we could pass to a subsequence such that

lim inf
n→∞

|DJτxna(τxnvn)v| > 0 (3.6)

and such that either |xn + yn| → ∞ or xn + yn → −ξ for some ξ ∈ RN . In the first case it
would follow that τ−xn−ynv ⇀ 0 in H1 and hence f(u0)τ−xn−ynv → 0 in L1. Therefore,

DJτ−yna(u0)τ−xn−ynv = o(1). (3.7)

Using (3.2), (3.7), and the fact that (DJa(un)) vanishes in H−1 we would obtain

DJτxna(τxnvn)v = DJτ−yna(τ−ynvn)τ−xn−ynv
= DJτ−yna(τ−ynun)τ−xn−ynv −DJτ−yna(u0)τ−xn−ynv + o(1)
= DJτ−yna(τ−ynun)τ−xn−ynv + o(1)
= DJτxna(τxnun)v + o(1)
= o(1),

in contradiction with (3.6). In the second case we would obtain, using that translation is
continuous in H1 and in Lq for q ⊆ [1,∞):

DJτxna(τxnvn)v = DJτ−yna(τ−ynvn)τξv + o(1)
= DJτ−yna(τ−ynun)τξv −DJτ−yna(u0)τξv + o(1) by (3.2)
= −DJτ−yna(u0)τξv + o(1) since (DJa(un)) vanishes
= −DJa∗(u0)τξv + o(1)
= o(1) by (3.5),

contradicting (3.6). We have therefore proved that (DJa(vn)) vanishes in H−1.
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Lemma 3.4 (Splitting Lemma). Let (un) be a Palais-Smale sequence for Ja at the level
c ∈ R. Then either un → 0 in H1 or, after passing to a subsequence, there are k ∈ N,
sequences (yin)n ⊆ RN , functions ai ∈ L∞, and functions ui ∈ H1\{0} (i = 1, . . . , k) such
that each ui is a critical point of Jai, and such that the following hold true:∣∣∣∣∣un −

k∑
i=1

τyinu
i

∣∣∣∣∣
p

→ 0, (3.8)

c ≥
k∑
i=1

Jai(ui), (3.9)

τ−yina
w*→ ai, (3.10)

and
|yin − yjn| → ∞ (i 6= j, n→∞). (3.11)

Proof. Since (un) is a (PS)-sequence for Ja, it is bounded in H1 and (DJa(un)) vanishes in
H−1.
If (un) vanishes then |un|p → 0 (see above). Since DJa(un)un = o(1), also ‖un‖ → 0.
If (un) does not vanish then there exist u1 ∈ H1\{0} and a sequence (y1

n) ⊂ RN such that,
after passing to a subsequence and writing u1

n := un, τ−y1
n
u1
n ⇀ u1. By the compactness

of P we may also assume that τ−y1
n
a

w*→ a1 ∈ L∞. Now we define u2
n := u1

n − τy1
n
u1, so

τ−y1
n
u2
n ⇀ 0. Lemma 3.3 assures that

Ja(u1
n)− Ja(u2

n)→ Ja1(u1),
‖u1

n‖2 − ‖u2
n‖2 → ‖u1‖2,

DJa1(u1) = 0

and (DJa(u2
n)) vanishes in H−1. If (u2

n) vanishes, then |u2
n|p → 0 and hence

|u1
n − τy1

n
u1|p → 0.

Otherwise, there exist a2 ∈ L∞, u2 ∈ H1\{0}, and a sequence (y2
n) ⊂ RN such that, after

passing to a subsequence, τ−y2
n
a

w*→ a2 and τ−y2
n
u2
n ⇀ u2. Since τ−y1

n
u2
n ⇀ 0, |y1

n− y2
n| → ∞.

Proceeding in this way, inductively we obtain sequences (yin), functions ai ∈ L∞, and
functions ui ∈ H1\{0}, for i = 1, 2, 3, . . . . Note that since ui is a nontrivial critical point
of Jai for i ≥ 1, necessarily (ai)+ 6= 0. On the other hand, |(ai)+|∞ ≤ |a|∞. Hence ui ∈ Nai
for every i and by (2.3) there is C > 0, independent of i, such that ‖ui‖ ≥ C. For every j
we have

0 ≤ ‖uj+1
n ‖2 = ‖un‖2 −

j∑
i=1
‖ui‖2 + o(1),

so by the lower positive bound for ‖ui‖ and since (un) is bounded in H1 the process must
stop after a finite number of iterations. Therefore, there is k ∈ N such that (uk+1

n ) vanishes,

|uk+1
n |p → 0 (3.12)
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and (3.8) holds true.
Similarly, we have

−
∫
RN
a|uk+1

n |p ≤ Ja(uk+1
n ) = Ja(un)−

k∑
i=1

Jai(ui) + o(1),

so (3.9) is a consequence of (3.12) and of c = limn→∞ Ja(un).
The remaining properties (3.10) and (3.11) were already proved along the way.

4 Energy Estimates and the Existence of a Ground State
In this section we assume a ∈ L∞, define ā as in (1.5), and assume (A).
The technique used in the following lemma is well known, see, e.g., [25]:

Lemma 4.1. Let a1, a2 ∈ L∞ be such that a1 ≥ a2. Then ca1 ≤ ca2. If in addition a1 6= a2
and Ja2 has a ground state then ca1 < ca2.

Proof. If a+
2 = 0 then there is nothing to prove. Suppose therefore that a+

2 6= 0 and that
u ∈ Na2 . It follows that

∫
RN a1(x)|u|p ≥

∫
RN a2(x)|u|p > 0, and we define

t :=
(∫

RN a2(x)|u|p∫
RN a1(x)|u|p

) 1
p−2

≤ 1.

Then
DJa1(tu)[tu] = t2

(
‖u‖2 − tp−2

∫
RN
a1(x)|u|p

)
= t2DJa2(u)u = 0,

and tu ∈ Na1 . On the other hand,

Ja2(u) = 1
2‖u‖

2 − 1
p

∫
RN
a2(x)|u|p =

(
1
2 −

1
p

)
‖u‖2 ≥

(
1
2 −

1
p

)
‖tu‖2 = Ja1(tu) ≥ ca1 .

It follows that ca2 = infu∈Na2
Ja2(u) ≥ ca1 .

If a1 6= a2 and u is a ground state of Ja2 then |u| > 0. Using the same definition for t as
above we obtain t < 1. It follows that ca2 = Ja2(u) > Ja1(tu) ≥ ca1 .

We identify any constant b ∈ R with the constant function b ∈ L∞. The next lemma is
easily verified:

Lemma 4.2. Let b1, b2 > 0. Then u is a ground state of Jb1 if and only if (b1/b2)1/(p−2)u
is a ground state for Jb2, and

Jb2((b1/b2)1/(p−2)u) = (b1/b2)2/(p−2)Jb1(u).
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It is well known that there exists a positive and radially symmetric ground state U1
for J1 [37]. This could also be proved applying the Splitting Lemma 3.4 to a minimizing
sequence for J1, see the proof of Theorem 1.1. Define, for every b > 0, the function
Ub := (1/b)1/(p−2)U1. By Lemma 4.2, Ub is a ground state of Jb and it follows that

cb = Jb(Ub) = (1/b)2/(p−2)J1(U1) = (1/b)2/(p−2)c1.

Fix ε > 0 such that
0 < γ < 2(1− ε), (4.1)

where γ ∈ (0, 2) is given by (A), and pick a cut-off function χ ∈ C∞(RN) with 0 ≤ χ ≤ 1,
χ(x) = 1 if |x| ≤ 1− ε, and χ(x) = 0 if |x| ≥ 1. For u ∈ H1 and R > 0 define ΛRu ∈ H1

by
(ΛRu)(x) := χ

(
x

R

)
u(x),

for all x ∈ RN . Observe that

ΛRu→ u ∈ H1 as R→∞. (4.2)

Then [19, Lemma 2] states that for all b, s > 0∫
RN
||∇Ub|2 − |∇ΛRUb|2| = O(e−2(1−ε)R), (4.3)

and ∫
|x|≥R
|Ub|sdx = O(e−sR) (4.4)

as R→∞.

Proposition 4.3. It holds true that ca < cā.

Proof. We consider the three cases from condition (A) separately. If (i) ā ≤ 0 then cā =∞.
Since a+ 6= 0, ca < ∞ and there is nothing to prove. Therefore we may assume for the
remaining cases that ā > 0. If (ii) a ≥ ā then a 6= ā, since ā > −∞ implies that B 6= ∅.
Moreover, Lemma 4.1 implies that ca < cā because Jā has a ground state (see Lemma 4.1).
In the remaining case (iii) of (A), inspired by [19], we claim first that there is D > 0 such
that

Ja(tτznΛRnUā) ≤ cā −De−γRn for large n and all t ≥ 0. (4.5)

To see this, note that τ−zna
w*→ ā and (4.2) imply that∫

RN
aτzn|ΛRnUā|p =

∫
RN

(τ−zna)Up
ā + o(1) =

∫
RN
āUp

ā + o(1) (4.6)

and hence
lim
n→∞

Ja(tτznΛRnUā) = Jā(tUā) for all t ≥ 0. (4.7)
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Moreover, by (4.6) ∫
RN
aτzn|ΛRnUā|p > 0 for large n. (4.8)

Therefore, the fibering maps t 7→ Jā(tUā) and t 7→ Ja(tτznΛRnUā) have, for large n, exactly
one critical point in (0,∞), and it is a global maximum. Moreover, the fibering maps take
the value 0 at 0 and tend to −∞ as t→∞. Recalling that the maximum of t 7→ Jā(tUā) is
cā, these facts imply, together with (4.7), that there are n0 ∈ N and t1 > t0 > 0 such that

∀n ≥ n0 ∀t ∈ [0, t0] ∪ [t1,∞) : Ja(tτznΛRnUā) ≤
cā
2 . (4.9)

Passing to a subsequence we may assume that (Rn) is an increasing sequence. Using (A)
and the positivity of Uā choose n1 ≥ n0 such that

C :=
∫
‖x‖≤(1−ε)Rn1

κUp
ā > 0. (4.10)

It follows for n ≥ n1 that∫
RN
a|τznΛRnUā|p

≥
∫
‖x‖≤Rn

(τ−zna)|ΛRnUā|p since a ≥ 0 on BRn(zn)

≥
∫
‖x‖≤Rn

(
ā+ κe−γRn

)
|ΛRnUā|p by (A)

≥ ā
∫
‖x‖≤(1−ε)Rn

Up
ā + e−γRn

∫
‖x‖≤(1−ε)Rn1

κUp
ā

≥ ā
∫
RN
Up
ā +O(e−p(1−ε)Rn) + e−γRn

∫
‖x‖≤(1−ε)Rn1

κUp
ā by (4.4)

≥ ā
∫
RN
Up
ā +O(e−p(1−ε)Rn) + Ce−γRn by (4.10).

Together with (4.3) and (4.4) this implies for n ≥ n1 and t ∈ [t0, t1]

Ja(tτznΛRnUā) = t2

2

∫
RN
|∇τznΛRnUā|2 + t2

2

∫
RN
τzn(ΛRnUā)2 − tp

p

∫
RN
a(x)|τznΛRnUā|p

≤ t2

2

∫
RN
|∇Uā|2 + t2

2

∫
RN
U2
ā + t2O(e−2(1−ε)Rn)− tp

p

∫
RN
a(x)|τznΛRnUā|p

≤ Jā(tUā) + t21O(e−2(1−ε)Rn) + tp1O(e−p(1−ε)Rn)− tp0
p
Ce−γRn

≤ cā +O(e−2(1−ε)Rn)− tp0
p
Ce−γRn .

By (4.1) and (4.9) the claim (4.5) follows.
Using (4.8) pick n0 ∈ N such that there is t0 > 0 with t0τzn0

ΛRn0
Uā ∈ Na and such that

(4.5) holds true for n = n0. It follows that

ca ≤ Ja(t0τzn0
ΛRn0

Uā) ≤ cā −De−γRn0 < cā.
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Proof of Theorem 1.1. Since a+ 6= 0, Na 6= ∅ and ca < ∞. Moreover, ca > 0 by (2.4).
Using Ekeland’s Lemma we can therefore build a minimizing sequence (un) ⊆ Na for
Ja = Ja|Na that is also a (PS)-sequence for Ja at the level ca. By Lemma 2.2 (un) is a
(PS)-sequence for Ja at the level ca. It cannot happen that un → 0 since Ja(un)→ ca > 0.
Therefore Lemma 3.4 implies the existence of k ∈ N, functions ai ∈ A and nontrivial
critical points ui of Jai such that

ca ≥
k∑
i=1

Jai(ui).

Since the functions ui are nontrivial critical points of Jai , (ai)+ 6= 0 for every i. By (2.4),
Jai(ui) > 0 for every i.
Assume that there is i such that ai ∈ B. Since then ai ≤ ā, Lemma 4.1 and Proposi-

tion 4.3 imply that Jai(ui) ≥ cai ≥ cā > ca, a contradiction. Therefore, each ai belongs to
A and is a translate of a. Hence Jai(ui) ≥ ca for every i. This implies that k = 1 and that
a translate of u1 is a ground state of Ja.

5 Tools for the Construction of Examples
Proof of Proposition 1.2. If B = ∅ then ā = −∞ and (A) is satisfied. Assume therefore
that B 6= ∅. In particular, a is not constant. We claim that

ā ≤ â. (5.1)

To see this, suppose that b ∈ B. There is (xn) ⊆ RN such that τxna
w*→ b. If (xn) contained

a bounded subsequence then, after passing to a subsequence, there would exist ξ ∈ RN

such that xn → ξ and τxna
w*→ τξa ∈ A. This follows from weak*-continuity of translation

in L∞, which in turn is a consequence of continuity of translation in L1. On the other
hand, since P is metrizable, τξa = b /∈ A, a contradiction. Therefore |xn| → ∞.
Given ε > 0, by Lemma 2.1 there is ϕ ∈ S1L

1 such that ϕ ≥ 0 and∫
RN
bϕ ≥ ess sup b− ε

2 .

Take ψ̃ ∈ C∞c such that ψ̃ ≥ 0 and

|ϕ− ψ̃|1 ≤
ε

4|b|∞
.

Set ψ := ψ̃/|ψ̃|1. Then
|ϕ− ψ|1 ≤

ε

2|b|∞
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and ψ ∈ S1L
1 ∩ C∞c satisfies ψ ≥ 0. We obtain∫

RN
bψ =

∫
RN
bϕ−

∫
RN
b(ϕ− ψ) ≥

∫
RN
bϕ− |b|∞|ψ − ϕ|1 ≥ ess sup b− ε.

Suppose that suppψ ⊆ BR. Then

ess sup b− ε ≤
∫
RN
bψ = lim

n→∞

∫
RN

(τxna)ψ

≤ lim
n→∞

ess sup
(
a|BR(−xn)

) ∫
BR
ψ ≤ lim

n→∞
ess sup

(
a|RN\B|xn|−R

)
= â.

Letting ε→ 0 this yields ess sup b ≤ â and hence (5.1).
We now consider the three subcases of (A), under the assumption B 6= ∅. In case (i)

we obtain from (5.1) that ā ≤ â ≤ 0. In case (ii) (5.1) implies ā ≤ â ≤ a. And in case (iii)
there is a sequence (zn) ⊆ RN such that τ−zna

w*→ â, i.e., â ∈ A. Since a is not constant,
â ∈ B. Therefore â ≤ ā, which implies together with (5.1) that â = ā. In this case, the
original condition (A) is satisfied, with ā instead of â.

Proof of Proposition 1.5. Define the linear operator Γ: RRk → RRk×R` by (Γu)(x, y) :=
u(x). Suppose that a ∈ L∞(Rk) and set a′ := Γa. Moreover, define by A′ and B′ the
corresponding sets for a′ as in (1.3) and (1.4), and define ā′ as in (1.5).
We claim that

Γ restricts to a bijection B → B′. (5.2)

Clearly Γ is injective. We show first that b′ := Γb ∈ B′ if b ∈ B. There is (xn) ⊆ Rk

such that τxna
w*→ b. Since b /∈ A, |xn| → ∞ (see the proof of Proposition 1.2). For any

ϕ ∈ L1(Rk+`) the function
x 7→

∫
R`
ϕ(x, y) dy

is in L1(Rk), by Fubini’s Theorem. We obtain
∫
Rk+`

(τ(xn,0)a
′)ϕ =

∫
Rk+`

(τxna)(x)ϕ(x, y) d(x, y) =
∫
Rk

(τxna)(x)
∫
R`
ϕ(x, y) dy dx

→
∫
Rk
b(x)

∫
R`
ϕ(x, y) dy dx =

∫
Rk+`

b′ϕ. (5.3)

Hence τ(xn,0)a
′ w*→ b′ and b′ ∈ A′. If b′ ∈ A′ were true, there would exist (x0, y0) ∈ Rk+`

such that τ(x0,y0)b
′ = a′. For all (x, y) ∈ Rk+` this would imply

b(x− x0) = b′(x− x0, y − y0) = a′(x, y) = a(x)

and therefore τx0b = a. But this would contradict b /∈ A. Therefore b′ ∈ B′. We have
shown that Γ(B) ⊆ B′.
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To show surjectivity, suppose that b′ ∈ B′. There is a sequence ((xn, yn)) ⊆ Rk+` such
that τ(xn,yn)a

′ w*→ b′. As before, |(xn, yn)| → ∞ since b′ /∈ A′. Moreover, since a′(x, y) = a(x)
for all (x, y), we can assume that yn = 0 for all n, so τ(xn,0)a

′ w*→ b′ and |xn| → ∞.
Suppose that (x∗, y), (x∗, y′) ∈ Rk+` are Lebesgue points of b′. We have

τ(0,y−y′)b
′ = w*-lim

n→∞
τ(xn,y−y′)a

′ = w*-lim
n→∞

τ(xn,0)a
′ = b′.

Therefore

b′(x∗, y) = lim
r→0

1
|Br|

∫
Br((x∗,y))

b′ = lim
r→0

1
|Br|

∫
Br((x∗,y))

τ(0,y−y′)b
′

= lim
r→0

1
|Br|

∫
Br((x∗,y′))

b′ = b′(x∗, y′).

Since the complement of the set of Lebesgue points of b′ has zero measure, this shows that
b′ is independent of the second argument and that there is b ∈ L∞ such that b′ = Γb.
We need to show that b ∈ B. Suppose that ϕ ∈ L1(Rk). Pick any ψ ∈ L1(R`) such
that

∫
ψ = 1. Then the map ϑ given by ϑ(x, y) := ϕ(x)ψ(y) is in L1(Rk+`), by Tonelli’s

Theorem. Moreover∫
Rk

(τxna)ϕ =
∫
Rk

(τxna)(x)
∫
R`
ϕ(x)ψ(y) dy dx =

∫
Rk+`

(τ(xn,0)a
′)ϑ→

∫
Rk+`

b′ϑ =
∫
Rk
bϕ.

Hence b ∈ A. If b belonged to A then clearly b′ would belong to A′, a contradiction.
Therefore b ∈ B and we have proved (5.2).
We now consider a number of cases. If B = ∅ then B′ = Γ(B) = ∅ and ā′ = −∞ ≤ 0,

that is, a′ satisfies (A). We therefore assume now that B 6= ∅. It follows that

ā′ = sup
b′∈B′

ess sup b′ = sup
b∈B

ess sup Γb = sup
b∈B

ess sup b = ā.

In case (A)(i) we obtain ā′ = ā ≤ 0. In case (A)(ii) we have ā ≤ a. This implies ā′ = ā ≤ a′.
And in case (A)(iii) there are sequences (zn) ⊆ Rk and Rn →∞ such that τ−zna

w*→ ā and

∀x ∈ BRn(zn) : a(x) ≥ ā+ κ(x− zn)e−γRn .

Put z′n := (zn, 0) and define κ′ := Γκ. As in (5.3) τ−zna′
w*→ ā = ā′. If (x, y) ∈ Bk+`

Rn (z′n)
then x ∈ Bk

Rn(zn) and hence

a′(x, y) = a(x) ≥ ā+ κ(x− zn)e−γRn = ā′ + κ′((x, y)− z′n)e−γRn .

In all cases a′ satisfies (A).
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